The Index of Dirac Operators on Incomplete Edge Spaces

ثبت نشده
چکیده

We derive a formula for the index of a Dirac operator on an incomplete edge space satisfying a “geometric Witt condition.” We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Index of Dirac Operators on Incomplete Edge Spaces

We derive a formula for the index of a Dirac operator on a compact, evendimensional incomplete edge space satisfying a “geometric Witt condition”. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah–Patodi–Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

Families Index for Manifolds with Hyperbolic Cusp Singularities

Manifolds with fibered hyperbolic cusp metrics include hyperbolic manifolds with cusps and locally symmetric spaces of Q-rank one. We extend Vaillant’s treatment of Dirac-type operators associated to these metrics by weaking the hypotheses on the boundary families through the use of Fredholm perturbations as in the family index theorem of Melrose and Piazza and by treating the index of families...

متن کامل

Incomplete Delta Functions

By applying projection operators to state vectors of coordinates we obtain subspaces in which these states are no longer normalized according to Dirac's delta function but normalized according to what we call " incomplete delta functions ". We show that this class of functions satisfy identities similar to those satisfied by the Dirac delta function. The incomplete delta functions may be employ...

متن کامل

On the index of Dirac operators on arithmetic quotients

Using the Arthur-Selberg trace formula we express the index of a Dirac operator on an arithmetic quotient manifold as the integral over the index form plus a sum of orbital integrals. For the Euler operator these orbital integrals are shown to vanish for products of certain rank one spaces. In this case the index theorem looks exactly as in the compact case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015